ESTIMAÇÃO DA ALTURA TOTAL DE ÁRVORES DE IPÊ FELPUDO UTILIZANDO MODELOS DE REGRESSÃO E REDES NEURAIS ARTIFICIAIS

Main Article Content

Adriano Ribeiro de MENDONÇA
Janiel Cerqueira da SILVA
Taíse Severo AOZAI
Eth Rocha da SILVA
Jeangelis Silva SANTOS
Daniel Henrique Breda BINOTI
Gison Fernandes da SILVA

Abstract

The aim of this work was to evaluate the accuracy of total height estimation with regression models and artificial neural networks (ANNs) in a pure ipê felpudo plantation. We adjusted four regression models and trained Multilayer Perceptron artificial neural networks, with two training criteria: considering the input variables DBH, age and dominant height, and only DBH. The ANNs and regression models were evaluated by the statistical analysis of bias (V), Mean of Absolute Differences (MD), Root Mean Square Error (RMSE) and Correlation Coefficient (r). The estimation of the total height of the trees with generic regression models and ANN with covariates presented a greater accuracy when compared to the regression models and ANN with DBH only.

Article Details

How to Cite
MENDONÇA, A. R. de, SILVA, J. C. da, AOZAI, T. S., SILVA, E. R. da, SANTOS, J. S., BINOTI, D. H. B., & SILVA, G. F. da. (2018). ESTIMAÇÃO DA ALTURA TOTAL DE ÁRVORES DE IPÊ FELPUDO UTILIZANDO MODELOS DE REGRESSÃO E REDES NEURAIS ARTIFICIAIS. Brazilian Journal of Biometrics, 36(1), 128–139. https://doi.org/10.28951/rbb.v36i1.154
Section
Articles

Most read articles by the same author(s)