GOMPERTZ REGRESSION MODEL WITH GAMMA FRAILTY: A STUDY ON THE APPLICATION IN LUNG CANCER
Main Article Content
Abstract
Survival models with frailty are used when some variables are non-available to explain the occurrence time of an event of interest. This non-availability may be considered as a random effect related to unobserved covariates, or that cannot be measured, such as environmental or genetic factors. This paper focuses on the Gamma-Gompertz (denoted by G-G) model that is one of a class of models that investigate the effects of unobservable heterogeneity. We assume that the baseline mortality rate in the G-G model is the Gompertz model, in which mortality increases exponentially with age and the frailty is a fixed property of the individual, and the distribution of frailty is a gamma distribution. The proposed methodology uses the Laplace transform to find the unconditional survival function in the individual frailty. Estimation is based on maximum likelihood methods and this distribution is compared with its particular case. A simulation study examines the bias, the mean squared errors and the coverage probabilities considering various samples sizes and censored data. A real example with lung cancer data illustrates the applicability of the methodology, where we compared the G-G and without frailty models via criteria which select the
best fitted model to the data.
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).