A BAYESIAN WEIBULL ANALYSIS OF BREAST CANCER DATA WITH LONG-TERM SURVIVORS IN PARANA STATE, BRAZIL
Main Article Content
Abstract
Breast cancer is one of the most common diseases among women worldwide with about 25% of new cases each year. In Brazil, 59,700 new cases of breast cancer were expected in 2019, according to the Brazilian National Cancer Institute (INCA). Survival analysis has been an useful tool for the identifying the risk and prognostic factors for cancer patients. This work aims to characterize the prognostic value of demographic, clinical and pathological variables in relation to the survival time of 2,092 patients diagnosed with breast cancer in Parana State, Brazil, from 2004 to 2016. In this sense, we propose a Bayesian analysis of survival data with long-term survivors by using Weibull regression models through integrated nested Laplace approximations (INLA). The results point to a proportion of long-term survivors around 57:6% in the population under study. In regard to potential risk factors, we namely concluded that 40-50 year age group has superior survival than younger and older age groups, white women have higher breast cancer risk than other races, and marital status decreases that risk. Caution on the general use of these results is nevertheless advised, since we have analyzed population-based breast cancer data without proper monitoring by a health
professional.
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).