STUDY OF TESTS FOR TREND IN TIME SERIES
Main Article Content
Abstract
The time series methodology is an important tool when using data over time. The time series can be composed of the components trend (Tt), seasonality (St) and the random error (at). The aim of this study was to evaluate the tests used to analyze the trend component, which were: Pettitt, Run, Mann-Kendall, Cox-Stuart and the unit root tests (Dickey-Fuller, Dickey-Fuller Augmented and Zivot and Andrews), given that there is a discrepancy between the test results found in the literature. The four series analyzed were the maximum temperature in the Lavras city, MG, Brazil, the unemployment rate in the Metropolitan Region of S~ao Paulo (RMSP), the Broad Consumer Price Index (IPCA) and the nominal Gross Domestic Product (GDP) of Brazil. It was found that the unit root tests showed similar results in relation to the presence of the stochastic trend for all series. Furthermore, the turning point of the Pettitt test diverged from all the structural breaks found through the Zivot and Andrews test, except for the GDP series. Therefore, it was found that the trend tests diverged, obtaining similar results only in relation to the unemployment series.
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).