SELECTION OF SNP MARKERS: ANALYZING GAW17 DATA USING DIFFERENT METHODOLOGIES
Main Article Content
Abstract
The quantity and complexity of generated data due to advances in genetic sequencing technologies has made statistical analysis an essential tool for their correct study and interpretation. However, there is still no agreement about which methodologies are more appropriate for those data, especially for the selection of genetic features that influence a specic phenotype. Genetic data are usually characterized by having a number of variables which is much greater than the number of observations. These variables exhibit little variability and high correlation. These characteristics hinder the application of traditional methodologies for variable selection. In this work (i.) we present dierent methodologies for selecting variables - Random Forest, LASSO and the traditional Stepwise method; (ii.) we apply them to genetic data to select SNP markers that characterize the presence or absence of a disease and (iii.) we compare their performances. Random Forest and Lasso show similar prediction performance, however none of them correctly select the relevant SNPs.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
AGNE, M.; HUANG, C.; HU, I.; WANG, H.; ZHENG, T.; LO, S. Identifyinginfluential regions in extremely rare variants using a fixed-bin approach. In: BMC.2011Proceedings, v.5, n.S9, p.S3, 2011.
ALCˆANTARA JUNIOR, G. P.Avalia ̧c ̃ao de m ́etodos de estima ̧c ̃ao e sele ̧c ̃ao devari ́aveis em modelos de regress ̃ao log ́ıstica, 2020. 116p. (Master) - UniversidadeFederal de S ̃ao Carlos, S ̃ao Carlos, 2020.
ALMASY, L.; DYER, T. D.; PERALTA, J. M.; KENT, J. W.; CHARLESWORTH,J. C.; CURRAN, J. E.; BLANGERO, J. Genetic analysis workshop 17 mini-exomesimulation. In: BMC. 2011Proceedings, v.5, n.S9, p.S2, 2011.
BECKMANN, J.; KASHI, Y.; HALLERMAN, E.; NAVE, A.; SOLLER, M.Restriction fragment length polymorphism among Israeli Holstein-Friesian dairybulls.Animal Genetics, v.17, n.1, p.25-38, 1986.
BREIMAN, L. Bagging predictors.Machine Learning, v.24, n.2, p.123-140, 1996.
BREIMAN, L. Random forests.Machine Learning, v.45, n.1, p.5-32, 2001.
CHARDON, P.; KIRSZENBAUM, M.; CULLEN, P. R.; GEFFROTIN, C.;AUFFRAY, C.; STROMINGER, J. L.; COHEN, D.; DAIMAN, M. Analysis ofthe sheep MHC using HLA class I, II, and C4 cDNA probes.Immunogenetics, v.22,n.4, p.349-358, 1985.
CHUN, H.; KELES, S. Sparse partial least squares regression for simultaneousdimension reduction and variable selection.Journal of the Royal Statistical Society:Series B (Statistical Methodology), v.72, n.1, p.3-25, 2010.
FENG, Z. Z.; YANG, X.; SUBEDI, S.; MCNICHOLAS, P. D. The LASSO andsparse least squares regression methods for SNP selection in predicting quantitativetraits.IEEE/ACM Transactions on Computational Biology and Bioinformatics(TCBB), v.9, n.2, p.629-636, 2012.
FRIEDMAN, J.; HASTIE, T.; TIBSHIRANI, R. Regularization paths forgeneralized linear models via coordinate descent.Journal of Statistical Software,v.33, n.1, p.1-22, 2010.
GOLDBERG, D. E.Genetic algorithms in search, optimization, and machinelearning. Addison-Wesley Publishing Company, 1989. 412p.
HASTIE, T.; TIBSHIRANI, R. Extended comparisons of best subset selection,forward stepwise selection, and the lasso.arXiv: Methodology, 2017.
HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J.The Elements of StatisticalLearning. 2ed. Springer, 2008. 745p.
IZBICKI, R.; SANTOS, T.Machine learning sob a ́otica estat ́ıstica:Umaabordagem preditivista para estat ́ıstica com exemplos em R. Notes, 2018. 225p.
KUMAR, S.; ATTRI, S.; SINGH, K. Comparison of lasso and stepwise regressiontechnique for wheat yield prediction.Journal of Agrometeorology, v.21, n.2, p.188-192, 2019.
LEWIS, J.; ABAS, Z.; DADOUSIS, C.; LYKIDIS, D.; PASCHOU, P.; DRINEAS,P. Tracing cattle breeds with principal components analysis ancestry informativeSNPs.PloS One, v.6, n.4, e18007, 2011.
LIAW, A.; WIENER, M. Classification and regression by Random Forest.R News,v.2, n.3, p.18-22, 2002.
MOKRY, F. B.; HIGA, R. H.; MUDADU, M. de A.; LIMA, A. O. de; MEIRELLES,S. L. C.; SILVA, M. V. G. B. da; CARDOSO, F. F.; OLIVEIRA, M. M. de;URBINATI, I.; NICIURA, S. C. M.; TULLIO, R. R.; ALENCAR, M. M. de;REGITANO, L. C. de A. Genome-wide association study for backfat thickness inCanchim beef cattle using Random Forest approach.BMC genetics, v.14, n.1, p.47,2013.
NELDER, J. A.; WEDDERBURN, R. W. Generalized linear models.Journal ofthe Royal Statistical Society: Series A (General), v.135, n.3, p.370-384, 1972.
OGUTU, J. O.; PIEPHO, H. ; SCHULZ-STREECK, T. A comparison of randomforests, boosting and support vector machines for genomic selection. In: BMC. 2011Proceedings, v.5, n.S3, p.S11, 2011.
OLIVEIRA, F. C. D.Um m ́etodo para seleção de atributos em dados genˆomicos,2015. 273p. Thesis (Ph.D.) - Universidade Federal de Juiz de Fora, Juiz de Fora,2015.
PARK, T.; CASELLA, G. The Bayesian LASSO.Journal of the American StatisticalAssociation, v.103, n.482, p.681-686, 2008.
PAULA, G. A.Modelos de regress ̃ao: com apoio computacional.IME-USP, 2013.434p.
SAAD, M.; SAINT PIERRE, A.; BOHOSSIAN, N. and MAC ́E, M.; MARTINEZ,M. Comparative study of statistical methods for detecting association with rarevariants in exome-resequencing data. In: BMC. 2011Proceedings, v.5, n.S9, p.S33,2011.
SASAZAKI, S.; HOSOKAWA, D.; ISHIHARA, R.; AIHARA, H.; AYAMA, K.;MANNEN, H. Development of discrimination markers between japanese domesticand imported beef.Animal Science Journal, v.82, n.1, p.67-72, 2011.
SCHAPIRE, R. E.; FREUND, Y.; BARTLETT, O.; LEE, W. S. Boosting themargin: A new explanation for the effectiveness of voting methods.The Annals ofStatistics, v.26, n.5, p.1651-1686, 1998.
SUEKAWA, Y.; AIHARA, H.; ARAKI, M.; HOSOKAWA, D.; MANNEN, H.;SASAZAKI, S. Development of breed identification markers based on a bovine 50KSNP array.Meat Science, v.85, n.2, p.285-288, 2010.
TIBSHIRANI, R. Regression shrinkage and selection via the lasso.Journal of theRoyal Statistical Society: Series B (Statistical Methodology), v.58, n.1, p.267-288,1996.
WANG, L.; PUNGPAPONG, V.; LIN, Y.; ZHANG, M.; ZHANG, D. Genome-wide case-control study in GAW17 using coalesced rare variants. In: BMC. 2011Proceedings, v.5, n.S9, p.S110, 2011.
ZENG, P.; ZHAO, Y.; QIAN, C.; ZHANG, L.; ZHANG, R.; GOU, J.; LIU, J.;LIU, L.; CHEN, F. Statistical analysis for genome-wide association study.Journalof Biomedical Research, v.29, p.97-285, 2015.