AN APPLICATION OF THE POISSON-WEIBULL MODEL FOR CENSURED DATA
Main Article Content
Abstract
In this paper, we proposed the Poisson-Weibull distribution for the modeling of survival data. The motivation to study this model since, in addition to generalizing the Weibull distribution, which is widely used in several areas of knowledge among them the Survival and Reliability analysis, it presents great exibility in the forms of the hazard function. The Poisson-Weibull distribution was created in a composition of discrete and continuous distributions where there is no information about which factor was responsible for the component failure, only the minimum lifetime value among all risks is observed. The maximum likelihood approach was used to estimate the parameters of the model. Also was conducted a simulation study to examine the mean, the bias, and the root of the mean square error of the maximum likelihood estimates of the proposed model according to the censoring percentages and sample sizes. The model selection criteria were also applied, in addition to graphic techniques such as TTT-Plot and Kaplan-Meier. Application to the real data set was used to illustrate the usefulness
of the distribution.
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).