Multistate model in the behavioral study of the parasitoid Telenomus podisi for biological soybean control

Main Article Content

Laura Vicuña Torres de Paula
Idemauro Antonio Rodrigues de Lara
https://orcid.org/0000-0002-1172-9855
Carolina Reigada
Victor José Bon

Abstract

Biological pest control through the use of wasps are sustainable ways of protecting plants and, consequently, agricultural production. In this context, an entomological experiment is motivated, in which the forraging and reproductive behaviors of the parasitoid Telenomus podisi were qualified over time, considering non parasitized (sp0) and parasitized (sp1) of the brown stink bug, Euschistus heros. The experiment features a longitudinal study of continuous time with variable nominal qualitative response, grouped into four mutually exclusive categories (flying-walking, drumming, oviposition and marking). Continuous time transition models, also known as multistate models, are a viable alternative for analyzing data with these characteristics. Therefore, this class of models was considered in this work to study the behavior of the parasitoid, through the average length of stay in each of the response categories, as well as their preference probabilities. As a result, there was a significant effect of the treatment of host eggs (non parasitized or previously parasitized). When having contact with previously parasitized eggs, the female parasitoid T. podisi has preference for the categories of movement which are flying-walking and drumming. In contrast, when in contact with non parasitized eggs, the female T. podisi has a preference for oviposition
and marking. The applied methodology proved to be adequate for this typical experimental situation in entomological studies associated with the description of the behavior of a parasitoid.

Article Details

How to Cite
Torres de Paula, L. V., Antonio Rodrigues de Lara, I., Reigada, C. ., & José Bon, V. (2023). Multistate model in the behavioral study of the parasitoid Telenomus podisi for biological soybean control. Brazilian Journal of Biometrics, 41(1), 70–82. https://doi.org/10.28951/bjb.v41i1.602
Section
Articles

References

BORGES, M.; SCHMIDT, F. G. V.; SUJII, E. R.; MEDEIROS, M. A.; MORI, K.; ZARBIN, P.

H. G.; FERREIRA, J. T. B. Field responses of stink bugs to the natural and synthetic pheromone

of the Neotropical brown stink bug, Euschistus heros (Heteroptera: Pentatomidae). Physiological

Entomology, 23 ( 3), 202-207 (1998).

CONN) B.; COOCH, E. G. Multistate capture-recapture analysis under imperfect state observation:

an application to disease models. Journal of Applied Ecology, 46 ( 2), 486-492 (2009).

CORREA-FERREIRA, B. S.; DE AZEVEDO, J. Soybean seed damage by different species of

stink bugs. Agricultural and Forest Entomology, 4 ( 2), 145-150 (2002).

EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária Embrapa Soja. Girassol. Disponível

em: https://www.embrapa.br/soja/cultivos/soja1/dados-economicos, (2019).

FOERSTER, L. A.; DOETZER, A. K.; CASTRO, L. C. F. D. Emergence, longevity and fecundity

of Trissolcus basalis and Telenomus podisi after cold storage in the pupal stage. Pesquisa

Agropecuaria Brasileira, 39 (9), 841-845 (2004).

GÁMEZ-VIRUÉS, S.; GURR, G.; RAMAN, A.; LA SALLE, J.; NICOL, H. Effects of flowering

groundcover vegetation on diversity and activity of wasps in a farm shelterbelt in temperate

Australia. BioControl, 54 (2), 211-218 (2009).

Gimenez, O.; Choquet, R.; Lebreton, J-D. Parameter redundancy in multistate capturerecapture

models. Journal of Mathematical Methods in Biosciences, 45 ( 6), 704-722 (2003).

HOEL) G.; PORT, SIDNEY, C.; STONE, C. J. Introduction to stochastic processes. Boston:

Houghton Mifflin Company, (1972).

JACKSON, C. Multi-state modelling with R: the msm package. Cambridge: Cambridge Press,

(2018).

KALBFLEISCH, J. D.; LAWLEES, J. F. The analysis of panel data under a Markov assumption.

Journal of the American Statistical Association, 80 ( 392), 863-871 (1985).

KARLIN, S.; TAYLOR, H. M. A first course in stochastic processes. New York: Academic Press,

(1975).

KLEIN, J. P.; MOESCHBERGER, M. L. Survival analysis: techniques for censored and truncated

data. New York: Springer Science & Business Media, (2006).

LARA, I. A. R.; HINDE, J; TACONELI, C. A. An alternative method for evaluating stationarity

in transition models. Journal of Statistical Computation and Simulation, 87, 2962-2980 (2018).

LARA, I. A. R.; HINDE, J. P.; DE CASTRO, A. C.; SILVA, I. J. O. A proportional odds

transition model for ordinal responses with an application to pig behaviour. Journal of Applied

Statistics, 44 ( 6), 1031-1046 (2017).

LEITE, M. L. M. V.; LUCENA, L. R. R.; BEZERRA, R. C. A.; ALMEIDA, M. C. R.; SIMÕES,

V. J. L. P. Urochloa grass growth as a function of nitrogen and phosphorus fertilization. Brazilian

Journal of Biometrics, 39 (4), 492-504 (2021).

MEIRA-MACHADO, L.; DE UÑA-ÁLVAREZ, J.; CADARSO-SUAREZ, C.; ANDERSEN)

K. Multi-state models for the analysis of time-to-event data. Statistical methods in medical research,

( 2), 195-222 (2009).

MOLENBERGHS, G.; VERBEKE, G. Models for discrete longitudinal data.New York: Springer

Science & Business Media, (2006).

OLIVEIRA, R. D. V. C. D.; SHIMAKURA, S. E.; CAMPOS, D. P.; HOKERBERG, Y. H.

M.; VICTORIANO, F. P.; RIBEIRO, S.; CARVALHO, M. S. Effects of antiretroviral treatment

and nadir CD4 count in progression to cardiovascular events and related comorbidities in a HIV

Brazilian cohort: a multi-stage approach. AIDS care, 30, 551-559 (2018).

OLIVEIRA, R. D. V. C. D.; SHIMAKURA, S. E.; CAMPOS, D. P.; VICTORIANO, F. P.;

RIBEIRO, S. R., VELOSO, V. G.; CARVALHO, M. S. Multi-state models for defining degrees

of chronicity related to HIV-infected patient therapy adherence. Cadernos de saude publica, 29,

-811 (2013).

PREZOTO, F.; MACIEL, T. T.; DETONI, M.; MAYORQUIN, A. Z.; BARBOSA, B. C.

Pest Control Potential of Social Wasps in Small Farms and Urban Gardens. Insects, 10 (7), 192

(2019).

PUTTER, H. Tutorial in biostatistics: Competing risks and multi-state models Analyses using the

mstate package. Leiden: Leiden University Medical Center, Department of Medical Statistics and

Bioinformatics, (2011).

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria, (2020). DisponÃvel: https://www.R-project.org/.

ROTOLO, F. Frailty multi-state models for the analysis of survival data from multicenter clinical

trials. Tese de doutorado, Universita degli Studi di Padova, Padua - Italia, (2013).

SINGER, B.; SPILERMAN, S. The representation of social processes by markov models.

American Journal of Sociology, 82 ( 1), 1-54 (1976).

TOGNON, R.; SANT’ANA, J.; JAHNKE, S. M. Influence of original host on chemotaxic

behaviour and parasitism in Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Bulletin

of entomological research, 104 (6), 781-787 (2014).

WANG, Z. Z.; LIU, Y. Q.; MIN, S. H. I.; HUANG, J. H.; CHEN, X. X. Parasitoid wasps as

effective biological control agents. Journal of Integrative Agriculture, 18 ( 4), 705-715 (2019).

WARE, J. H.; LIPSITZ, S.; SPEIZER, F. E. Issues in the analysis of repeated categorical outcomes.

Statistics in Medicine, 7, 95-107 (1988).

WREEDE, L., FIOCCO, M.; PUTTER, H. mstate: An r package for the analysis of competing

risks and multi-state models. Journal of Statistical Software, 38 ( 1), 1-30 (2011).

WREEDE, L.; FIOCCO, M.; PUTTER, H. The mstate package for estimation and prediction

in non-and semi-parametric multi-state and competing risks models. Computer methods and

programs in biomedicine, 99 ( 3), 261-274 (2010).