The limits of conformity analysis under the Newcomb-Benford law and the COVID-19 pandemic in Brazil

Main Article Content

Carlos Roberto Souza Carmo
https://orcid.org/0000-0002-3806-9228
Fábio Caixeta Nunes
https://orcid.org/0000-0003-1309-7836
Fernando de Lima Caneppele
https://orcid.org/0000-0003-4498-8682

Abstract

This research investigated the possible divergences in results due to the use of the Newcomb-Benford Law to assess the conformity of information regarding infections and deaths caused by the SARS-CoV-2 coronavirus, from transversal clippings made two years after the arrival of the COVID-19 pandemic in Brazil, through the comparative analysis of the results of statistics related to the Z test, the Chi-square test (X2), the Kolmogorov-Smirnov test (KS), and also the mean absolute deviation (MAD). For this, two distinct samples were analyzed: one referring to data accumulated over two years of the pandemic in Brazil, from 02/25/2020 to 02/25/2022; and another exclusively to data from the day the pandemic was completed two years of its arrival in Brazil, therefore exclusively on 02/25/2022. Thus, it was possible to observe that the Brazilian epidemiological information system, governed by the health policies adopted by the Government, did not function properly during the COVID-19 pandemic, and still, there was no improvement in quality, even after two years of the pandemic. Additionally, evidence was observed that the data series relating to the contaminations and deaths caused by the SARS-CoV-2 coronavirus present behavior distinct from the expected frequency distributions according to the Newcomb-Benford Law, either as a result of a natural process or due to particular issues of the Brazilian information system itself, for example, logistics, data distortions, forms of geographic aggregation, errors and/or negligence, among other factors.

Article Details

How to Cite
Carmo, C. R. S., Nunes, F. C., & Caneppele, F. de L. . (2023). The limits of conformity analysis under the Newcomb-Benford law and the COVID-19 pandemic in Brazil. Brazilian Journal of Biometrics, 41(3), 234–248. https://doi.org/10.28951/bjb.v41i3.626
Section
Articles

References

ADAM, A.; TSARSITALIDOU, S.. Data misreporting during the COVID19 crisis: The role of political institutions. Economics Letters, [s. l.], v. 213, e-article 110348, April 2022. Available at: https://doi.org/10.1016/j.econlet.2022.110348. Accessed on: May 23, 2022.

BENFORD, F.. The law of anomalous numbers. Proceedings of the American Philosophical Societyv, [s. l.], 78, n. 4, p. 551-572, Mar. 31, 1938. Available at: https://www.jstor.org/stable/984802?seq=1#metadata_info_tab_contents. Accessed on: May 26, 2022.

BRASIL, Ministério da Saúde. COVID19: Painel Coronavírus (Versão v2.0). Brasília: Ministério da Saúde/Secretaria de Vigilância em Saúde (SVS), 2022. Available at: https://covid.saude.gov.br/. Accessed on: May 23, 2022-17:07h.

BRASIL.IO. COVID-19: boletins informativos e casos do coronavírus por município por dia. 23 maio. 2022. Available at: https://brasil.io/dataset/covid19/caso_full/. Accessed on: May 23, 2022-22:31h.

CAMPOLIETI, M.. COVID-19 deaths in the USA: Benford’s law and under-reporting. Journal of Public Health, [s. l], p. 1–4, e-article fdab161, 24 May, 2021. Available at: https://doi.org/10.1093/pubmed/fdab161. Accessed on: Jun 15, 2022.

CARMO, C. R. S.; CANEPPELE, F. de L.; NUNES, F. C.. Analysis of covid-19 contamination and deaths cases in brazil according to the newcomb-benford. Brazilian Journal of Biometrics, [s. l.], v. 39, n. 4, p. 522-535, 2021. Available at: https://doi.org/10.28951/rbb.v39i4.535. Accessed on: May 23, 2022.

COSTA, J. I. de F.; HENRIQUES, D. B. B.; MELO, S. de B.; SANTOS, J. dos. Análise de métodos contabilométricos para determinação de conformidade da Lei Newcomb-Benford aplicados à auditoria contábil. Revista Gestão Pública: Práticas e Desafios, v. 3, n. 6, p.292-314, dez. 2012. Available at: https://periodicos.ufpe.br/revistas/gestaopublica/article/view/1139. Accessed on: Jun 17, 2022.

DRUICĂ, E.; OANCEA, B.; VÂLSAN, C.. Benford's law and the limits of digit analysis. International Journal of Accounting Information Systems, [s. l.], v. 31, p. 75-82, Dec. 2018. Available at: https://doi.org/10.1016/j.accinf.2018.09.004. Accessed on: 17 maio 2022.

FARHADI, N.. Can we rely on COVID-19 data? An assessment of data from over 200 countries worldwide. Sci Prog., [s. l.], v. 104, n. 2, e-article 368504211021232, Apr-Jun 2021. Available at: https://doi.org/10.1177/00368504211021232. Accessed on: Jun 14, 2022.

FARHADI, N.; LAHOOTI, H.. Are COVID-19 data reliable? A auantitative analysis of pandemic data from 182 countries. MDPI, [s. l.], COVID, v. 1, n. 1p. 137-152, 2021. Available at: https://doi.org/10.3390/covid101001. Accessed on: Jun 17, 2022.

GALVEAS, D.; BARROS JR., F. ; FUZO, C.A.. A forensic analysis of SARS-CoV-2 cases and COVID-19 mortality misreporting in the Brazilian population. Public Health, [s. l.], v. 196, p. 114-116, July 2021. Available at: https://doi.org/10.1016/j.puhe.2021.05.010. Accessed on: May 23, 2022.

GÓMEZ-CAMPONOVO, M.; MORENO, J.; IDROVO, Á. J.; PÁEZ, M.; ACHKAR, M.. Monitoring the Paraguayan epidemiological dengue surveillance system (2009-2011) using Benford’s law. Biomédica, [s. l.], v. 36, p. 583-592, 2016. Available at: http://dx.doi.org/10.7705/biomedica.v36i4.2731. Accessed on: May 21, 2022.

GULIYEV , H.. COVID-19 data published by Turkey is fake or not? Research Square, [s. l.], p. 1-12, preliminary reports posted date: May 5th, 2021. Available at: https://assets.researchsquare.com/files/rs-489724/v1_covered.pdf?c=1631865538. Accessed on: Jun 18, 2022.

HURTADO-ORTIZ, A.; MORENO-MONTOYA, J.; PRIETO-ALVARADO, F. ; IDROVO, Á. J.. Evaluación comparativa de la vigilancia en salud pública de COVID-19 en Colombia: primer semestre. Biomédica, [s. l.], v. 40, supl. 2, p. 131-38, 2020. Available at: https://doi.org/10.7705/biomedica.5812. Accessed on: May 16, 2022.

IDROVO, Á. J.; MANRIQUE-HERNÁNDEZ, E. F.. Data quality of Chinese surveillance of COVID-19: objective analysis based on WHO´s situation reports. Asia Pacific Journal of Public Health, [s. l.],v. 32, n. 4, p. 165-167, 2020. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231903/. Accessed on: May 21, 2022.

IDROVO, A. J.; MANRIQUE-HERNÁNDEZ, E. F.; NINO, J. A. F.. Report from Bolsonaro’s Brazil: the consequences of ignoring science. International Journal of Health Services, [s. l.], v. 51, n.1, p. 31–36, 2021. Available at: https://pubmed.ncbi.nlm.nih.gov/33100167/. Accessed on: May 15, 2022.

ISEA, R.. How valid are the reported cases of people infected with Covid-19 in the world?. International Journal of Coronaviruses (OPEN ACCESS PUB), n. 1, p. 53-56, e-article hal-03519476, 2020. Available at: https://hal.archives-ouvertes.fr/hal-03519476. Accessed on: Jun 15, 2022.

KENNEDY, A. P.; YAM, S. C. P.. On the authenticity of COVID-19 case figures. PLoS ONE, [s. l.], v. 15, n. 12, e-article 0243123, 2020. Available at: https://doi.org/10.1371/journal.pone.0243123. Accessed on: May 20, 2022.

KILANI, A. An interpretation of reported COVID-19 cases in post-Soviet states. Journal of Public Health, [s. l.], v. 43, n. 2, p. e409–e410, Jun. 2021. Available at: https://doi.org/10.1093/pubmed/fdab091. Accessed on: Jun 17, 2022.

KILANI, A.; GEORGIOU, G. P.. Countries with potential data misreport based on Benford’s law. Journal of Public Health, [s. l.], v. 43, issue 2, p. e295-e296, Jun. 2021. Available at: https://doi.org/10.1093/pubmed/fdab001. Accessed on: Jun 14, 2022.

KOCH, C.; OKAMURA, K.. Benford's Law e COVID-19 reportagens. Economics Letters, [s. l.], v. 196, e-article 109573, Nov. 2020. Available at: https://doi.org/10.1016/j.econlet.2020.109573. Accessed on: Jun 17, 2022.

KOLIAS, P.. Applying Benford’s law to COVID-19 data: the case of the European Union. Journal of Public Health, [s. l.], p. 1-6, e-article fdac005, 17. Jun. 2022. Available at: https://doi.org/10.1093/pubmed/fdac005. Accessed on: Jun 18, 2022.

LEE, K.-B.; HAN, S.; JEONG, Y.. COVID-19, flattening the curve, and Benford’s law. Physica A: Statistical Mechanics and its Applications, [s. l.], v. 559, artigo 125090, 1 Dec. 2020.Available at: https://doi.org/10.1016/j.physa.2020.125090. Accessed on: May 25, 2022.

MAHASUAR, K.. Lies, damned lies, and statistics: the uncertainty over COVID-19 numbers in India. Knowl. Proces.s Manag., [s. l.], especial issue article, p. 1-8, 2021. Available at: https://onlinelibrary.wiley.com/doi/epdf/10.1002/kpm.1685. Accessed on: Jun 15, 2022.

MANRIQUE-HERNÁNDEZ, E. F.; FERNÁNDEZ-NIÑO, J. A.; IDROVO, Á. J.. Global performance of epidemiologic surveillance of Zika virus: rapid assessment of an ongoing epidemic. Public Health, [s. l.], n. 143, p.14-16, Feb. 2017. Available at: https://pubmed.ncbi.nlm.nih.gov/28159022/. Accessed on: May 21, 2022.

MANRIQUE-HERNÁNDEZ, E. F.; MORENO-MONTOYA, J.; HURTADO-ORTIZ, A.; PRIETO-ALVARADO, F. E.; IDROVO, Á. J.. Desempeño del sistema de vigilancia colombiano durante la pandemia de COVID-19: evaluación rápida de los primeros 50 días. Biomédica, [s. l.], v.40 (Supl. 2 - Infecciones respiratórias), p. 1-8, 2020.

Available at: https://doi.org/10.7705/biomedica.5582. Accessed on: May 21, 2022.

McCLAVE, J., BENSON, P.; SINCICH, T.. Statistics for business and economics. 13th Edition. [S. l.]: Prentice Hall, 2018. (e-book Pearson).

MIRANDA, A. T.. The distribution of COVID-19 Cases in the Philippines and the Benford’s law. Philippine e-Journal for Applied Research and Development, [s. l.], v. 10, p. 29-34, 2020a. Available at: https://pejard2.slu.edu.ph/wp-content/uploads/2021/10/2020.12.27.pdf. Accessed on: Jun 18, 2022.

MIRANDA, A. T.. World’s distribution of Covid-19 cases and the Benford’s law. Cape Comorin Journal, [s. l.], Special Issue, v. 2, issue 5, p. 16-20, Jun. 2020b. Available at: https://d1wqtxts1xzle7.cloudfront.net/63546712/0420200606-51889-1icc1xb-with-cover-page-v2.pdf?Expires=1655507887&Signature=Nulr59Og6ksQTCugm1hZHGUvHf-GSclT2pXSTeThU2b0kRRZQEwYzXiZqJV5hgFEAjE22knJ58x4XKXde~yQ9tXlsNNoCc-o71lfxQTclzN9vneONzlusYfhkA2G7qllavYArZY1rGkZadtvECMfc8OmQkWgMw5fpUe08yDQAZu5yMiQddhQ4C6OTdGlKafsU5KeG3qaGP1hkK28Z51kA9RO91ECrN7KWYOU7jqUNgcsHQNkXZUXvXMr5b0QjkywlIPpbg3l6W4-3ui~6ZEjd36Shwew8cjAGEICyT7ivbaQZKmGq3A6rb68dvE~N0faRQ~6xtDk9wlvjMke-QB6pA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA. Accessed on: Jun 19, 2022.

MONTGOMERY, D. C.; RUNGER, G. C.. Applied statistics and probability for engineers. 5rd. Edition. New York: John Wiley & Sons, 2010.

MOREAU, V.. Inconsistencies in countries COVID-19 data revealed by Benford’s law. Model Assisted Statistics and Applications, [s. l.], v. 16, n. 1, p. 73-79, 2021. Available at: https://content.iospress.com/download/model-assisted-statistics-and-applications/mas210517?id=model-assisted-statistics-and-applications%2Fmas210517. Accessed on: Jun 14, 2022.

MORILLAS-JURADO, F. G.; CABALLER-TARAZONA, M.; CABALLER-TARAZONA, V.. Applying Benford’s Law to monitor death registration data: a management tool for the COVID-19 pandemic. Mathematics, [s. l.], v. 10, n. 1:46, p. 1-16, e-article 1, 2022, 2022. Available at: https://doi.org/10.3390/math10010046. Accessed on: Jun 17, 2022.

NATASHEKARA, K.. COVID-19 cases in India and Kerala: a Benford’s law analysis. J. Public Health (Oxf)., [s. l.], e-article fdab199, 12 Jun. 2021.. Available at: https://doi.org/10.1093/pubmed/fdab199. Accessed on: Jun 18, 2022.

NEWCOMB, S.. Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics, [s. l.], v. 4, n. 1, p. 39-40, 1881. Available at: https://www.jstor.org/stable/2369148?seq=2#metadata_info_tab_contents. Accessed on: May 26, 2022.

NIGRINI, Mark J.. Benford’s Law: aplications for forensing accounting, auditing, and fraud detection. New Jersey: Wiley Corporate F&A, 2012.

PAHUJA, D. Application of Benford’s law to detect if COVID-data is under reported or manipulated. In: SRIVASTAVA, R; PUNDIR, A. K. S. (eds.). New frontiers in communication and intelligent systems. [S. l.]: Computing & Intelligent Systems, SCRS, India, 2021. Chapter 11. p. , 85–91. Available at: https://web.archive.org/web/20220423172139id_/https://www.scrs.in/kcfinder/upload/files/Chapter%2011.pdf. Accessed on: Jun 17, 2022.

PEARSON, K.. Mathematical contributions to the theory of evolution. V. On the reconstruction of the stature of prehistoric races. Proc. R. Soc. Lond., , v. 63, issue 389-400, p. 417-420, 31 December 1898. Available at: https://doi.org/10.1098/rspl.1898.0054. Accessed on: May 13, 2022.

SIEGEL, S.; CASTELLAN JR., J.. Estatística não-paramétrica para ciências do comportamento. 2. ed. Porto Alegre: Bookman, 2008

SILVA, L.; FIGUEIREDO FILHO, D.. Using Benford’s law to assess the quality of COVID-19 register data in Brazil. Journal of Public Health, [s. l.], v. 43, n. 1, p. 107–110, March 2021. Available at: https://academic.oup.com/jpubhealth/article/43/1/107/5937152. Accessed on: May 12, 2022.

SOONG, T. T.. Fundamentals of probability and statistics for engineers. . New York:John Wiley & Sons, 2004.

WILKS, D. S.. Statistical methods in the atmospheric sciences. 3rd. ed.. [S. l.]: Academic Press 2011 (e-book Elsevier).

ŽMUK, B.; JOŠIĆ, H.. Do countries diminish the. number of new covid-19 cases? A test using Benford’s law and uniform distribution. In: KANDŽIJA, V.; PINES, M. Economic system of European Union and accession of Bosnia and Herzegovina: challanges and policies ahead. Mostar: ECSA B&H, 2020. p. 63-74. Available at: http://www.ecsa-bih.ba/wp-content/uploads/2022/02/CONFERENCE-PROCEEDINGS_2020.pdf#page=63. Accessed on: Jun 15, 2022.

Most read articles by the same author(s)