Performance of Principal Components Estimation Method on the Quality of Factor Analysis without and with Varimax Rotation
Main Article Content
Abstract
The objective of this work was to evaluate the performance of the principal components estimation method on the quality of estimates of some parameters of exploratory factor analysis (EFA), without and with varimax rotation. To this end, 18 parametric correlation matrices (r) were imposed. These matrices were obtained from combinations between six different values of parametric communalities of four normally distributed random variables with three different proportions of distances between the parametric factorial loadings of the first two orthogonal factors. For each matrix r, the following parameters were defined: the first two eigenvalues (l1 and l2), the matrix of factor loadings (G), the four communalities () and the matrix of the specific factors (Y). After the 36 factor analyses, the respective estimates of these parameters were obtained, and their respective absolute deviations between the estimates obtained a posteriori and the parameters known a priori were evaluated. With the results of the Student's t test at 5% significance applied to the response surface analysis, it was concluded that the principal components estimation method for estimating orthogonal factors was not adequate and the varimax rotation improved relatively little the quality of the SFA estimates.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Abreu, VMN., Cruz, CD., Silva, MA., Figueiredo, EAP., Abreu, PG. Estudo da capacidade de combinação de linhagens de matrizes de frangos de corte, por meio da análise de fatores. Revista Brasileira De Zootecnia, 28, 258-263 (1999).
Almeida, LS. Geoestatística isolada e integrada à análise fatorial exploratória para a caracterização espacial dos fatores inerentes à ocorrência do pequizeiro – anão (Caryocar brasiliense subsp. intermedium (Wittm.) Prance & M. F. Silva Caryocaraceae).. Tese (Doutorado em Agronomia) – Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia (2021).
Almeida, LS., Guimarães, EC. Geoestatística e análise fatorial exploratória para representação espacial de atributos químicos do solo, na cafeicultura. Coffee Science, 11, 195-203 (2016).
Brown, TA. Confirmatory factor analysis for applied research - 2nd ed.(New York, NY: The Guilford Press, 2015).
Costello, AB., Osborne, J. Best practices in exploratory factor analysis: four recommendations for getting the most from your analysis. Practical Assessment, Research, and Evaluation, 10, article 7 (2005).
Cruz, CD., Carneiro, PCS., Regazzi, AJ. Modelos biométricos aplicados ao melhoramento genético, vol. 2 - 3ª ed. (Viçosa: Editora UFV, 2014).
Damásio, BF. Uso da análise fatorial exploratória em psicologia. Avaliação psicológica, 11, 213-228 (2012).
Ferreira, A., Cecon, PR., Cruz, CD., Ferrão, RG., Silva, MF., Fonseca, AFA., Ferrão, MAG. Seleção simultânea de coffea canephora por meio da combinação de análise de fatores e índices de seleção. Pesquisa Agropecuária Brasileira 40, 1189-1195 (2005).
Ferreira, DF. Estatística multivariada - 3ª ed. (Lavras: Editora UFLA, 2018).
Hair, JF., Black, WC., Babin, BJ., Anderson, RE. Multivariate data analysis – 7nd ed. (Edinburgh Gate: Pearson Education Limited, 2014).
Hauck Filho, N., Valentini, F. A análise de componentes principais é útil para selecionar bons itens quando a dimensionalidade dos dados é desconhecida? Avaliação psicológica 19, 351-467 (2020).
Hongyu, K. Análise fatorial exploratória: resumo teórico, aplicação e interpretação. Es Engineering and Science 7, 88-103 (2018). Disponivel em: https://doi.org/10.18607/ES201877599
Johnson, RA. Wichern, DW. Applied multivariate statistical analysis - 5nd ed. (New Jersey: Prentice Hall, 2002).
Kaiser, HF. The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187-200 (1958).
Lloret, S., Ferreres, A., Hernández, A. & Tomás, I. The exploratory factor analysis of items:guided analysis based on empirical data and software. Anales de psicología /Annals of psychology 33, 417-432 (2017).
Mingoti, SA. Análise de dados através de métodos de estatística multivariada – uma abordagem aplicada. (Belo Horizonte: Editora UFMG, 2013).
R core team (2020) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.
Rogers, P. Melhores práticas para sua análise fatorial exploratória: tutorial no factor. Revista de Administração Contemporânea, 26, e-210085 (2022).
Revelle, W. Procedures for psychological, psychometric, and personality research. (R package version 1.9.12.31, 2020).
Schauberger, P., Walker, A., Braglia, L. Read, write and edit xlsx files. (R package version 4.1.4, 2019).
Teixeira, FRF., Nascimento, M., Nascimento, ACC., Paixão, DM., Azevedo, CF., Silva, FF., Cruz, CD., Lopes, OS., Guimarães, SEF. Determinação de fatores em características de suínos. Revista Brasileira de Biometria, 33, São Paulo, 130-138 (2015).