A bivariate survival model for events with dependent failure times based on Archimedean copula functions. Application case: A sample of HIV patients English

Main Article Content

Jesús Alberto Peña-Guillén
https://orcid.org/0000-0003-2942-7086
Josefa Ramoni-Perazzi
https://orcid.org/0000-0002-0493-1940
Giampaolo Orlandoni-Merli
https://orcid.org/0000-0002-0031-2659

Abstract

This paper proposes a bivariate survival model for dependent failure times based on copula functions of the Archimedean family and the mean cumulative function for non-recurrent events of different types (MCFR ̅E) and uses it to estimate the probability of survival from the occurrence of events of different types on the same HIV/AIDS patient. The copula functions evaluate the dependence structure between the failure times of the events experienced by the same patient throughout their follow-up period, and the MCFR ̅E generates the marginal survival function for each event. The marginal function is a nonparametric estimator that gives the same estimated survival probability as the Kaplan-Meier estimator if the failure times of the different types of events are independent. If each patient experiences at least one event, a subset of them generates a compound event that affects the estimated probability of survival. The results show that the traditionally estimated survival probabilities are biased if dependent failure times are treated as independent.

Article Details

How to Cite
Alberto Peña-Guillén , J. ., Ramoni-Perazzi, J., & Orlandoni-Merli, G. (2024). A bivariate survival model for events with dependent failure times based on Archimedean copula functions. Application case: A sample of HIV patients : English. Brazilian Journal of Biometrics, 42(1), 50–58. https://doi.org/10.28951/bjb.v42i1.644
Section
Articles
Author Biographies

Jesús Alberto Peña-Guillén , Universidad de Los Andes

Mathematician, magister and PhD in Statistics. Full professor at the Universidad de Los Andes (Mérida, Venezuela)

Josefa Ramoni-Perazzi, Universidad Industrial de Santander

Economist, magister in Statistics, Ph.D. in Economics. Full professor at the Universidad Industrial de Santander (Colombia).

Giampaolo Orlandoni-Merli, Universidad de Santander

Economist, magister in economics, Ph.D. in Statistics. Full professor at the Universidad de Santander

References

Boracchi, P. & Orenti, A. Survival functions in the presence of several events and competing risk. Estimation and interpretation beyond Kaplan-Meier. International Journal of Statistics in Medical Research 4, 121-139 (2015).

Genest, C., Huang, W. & Dufour, J. A regularized goodness-of-fit test for copulas. Journal de la Société Francaise de Statistique 154, 64-77 (2013).

Genest, C. & Mackay, J. The joy of copulas: Bivariate distributions with uniform marginal. The American Statistician 40, 280-283 (1986).

Kaplan, E. & Meier, P. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53 (282), 457-481 (1958).

Lo, S. & Wilke, R.A. A copula model for dependent competing risks. Journal of the Royal Statistical Society Series C Applied Statistics 59 (2), 359 – 376 (2010).

Nelsen, R. An introduction to Copulas (Springer, 2006).

Nelson, W. Recurrent Events Data Analysis for Product Repairs, Disease Recurrences, and Other Applications (ASA-SIAM, 2003).

Peña, J. Modelos de supervivencia bivariantes para tiempos de fracaso posiblemente dependientes de eventos de distinto tipo experimentados por un mismo individuo (Doctoral Dissertation in Statistics, Universidad de Los Andes, Venezuela, 2018).

Peña, J., Ramoni-Perazzi, J. & Orlandoni-Merli, G. Un modelo de supervivencia bivariante para eventos dependientes bajo el enfoque de funciones cópulas. Revista de la Facultad de Farmacia 60, 13-24 (2018).

Pintilie, M. Competing Risk: A Practical Perspective (Wiley, 2006).

Taylor, L. & Peña, E. Parametric estimation in a recurrent competing risks model. Journal of the Iranian Statistical Society 20, 514-537 (2013).

Timaure, R. Método unificado para el estudio de la sensibilidad a los datos faltantes y las desviaciones a los supuestos de la distribución en modelos de efectos mixtos (Doctoral Dissertation in Statistics, Universidad de Los Andes, Venezuela, 2017).

Úbeda, M. Cópulas y Cuasicópulas: Interrelaciones y nuevas propiedades. Aplicaciones (Doctoral Dissertation in Statistics, Universidad de Almería, España, 2001).

WHO. Directrices unificadas sobre el uso de medicamentos antirretrovíricos para el tratamiento y la prevención de la infección por el VIH, Venezuela 2013. Available at (http://www.who.int/hiv/pub/).

Zheng M, & Klein J.P. Estimates of Marginal Survival for Dependent Competing Risks Based on an Assumed Copula. Biometrika 82 (1), 127-132 (1995).